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a b s t r a c t

Background: Macrophages are important in wound defense and healing. Dakin’s solution

(DS), buffered sodium hypochlorite, has been used since World War I as a topical antimi

crobial for wound care. DS has been shown to be toxic to host cells, but effects on immune

cells are not well documented.

Materials and methods: DS at 0.5%, 0.125%, and ten fold serial dilutions from 0.25%

0.00025% were evaluated for cellular toxicity on murine macrophages (J774A.1). The effect

of DS on macrophage adhesion, phagocytosis, and generation of reactive oxygen species

was examined. Macrophage polarization following DS exposure was determined by gene

expression using quantitative real time polymerase chain reaction.

Results: Concentrations of DS >0.0025% reduced macrophage viability to <5% in exposure

times as short as 30 s. Similarly, phagocytosis of Staphylococcus aureus, Pseudomonas aeru

ginosa, and Aspergillus flavus were significantly reduced at all tested concentrations by

macrophages pretreated with DS. H2O2 production was reduced by 8% 38% following

treatment with 0.00025% 0.125% DS. Macrophage adherence was significantly increased

with >0.0025% DS after 15 min of exposure compared with controls. Quantitative real time

polymerase chain reaction demonstrated that DS exposure resulted in classical macro

phage activation, with increased expression of inducible nitric oxide synthase 2, inter

feron g, and interleukin (IL) 1b.

Conclusions: DS at clinically used concentrations (0.025% 0.25%) was detrimental to

macrophage survival and function. For optimal clinical use, understanding the impact of

DS on macrophages is important as depletion may result in impaired pathogen clearance

and delayed healing. These findings indicate that 0.00025% DS is a safe starting dose;

however, optimal use of DS requires further validation with in vivo models.
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1. Introduction

Sodium hypochlorite has broad antimicrobial activity against

bacteria, fungi, viruses, and parasites [1]. Dakin’s solution (DS)

is buffered sodium hypochlorite, which has a long history of

use as a topical antiseptic in war wounds. Henry Dakin first

advocated the use of sodium hypochlorite as a topical anti

septic duringWorldWar I [2]. Dakinworked closelywithAlexis

Carrel, a Nobel prize winning surgeon, who popularized the

use of DS in his work published in 1917, titled “The Treatment

of InfectedWounds” [3,4]. DuringWorldWar II, Bunyan began

using sodium hypochlorite in the management of burns [5].

Interest in the use of DS has been renewed in the United

Statesmilitary given the recognition of and difficulty in treating

invasive fungal infections in soldiers who sustained blast

trauma with lower extremity amputations in Operation

Enduring Freedom [6]. Invasive fungal infections have also been

seen in trauma associated with agricultural, motor vehicle, and

blunt crush injuries, and during natural disasters as recently

reportedamong tornadovictims [7e9]. Fungal infections inburn

injury are also important as the incidence of fungal infections

documented in the literature ranges from 6.3%e44% [10].

Currently, DS is available commercially at full strength

(0.5%), half strength (0.25%), quarter strength (0.125%), and 1/

40 strength (0.0125%). Concerns have been raised about the

modern use of DS as the product information for all four di

lutions are similar: once daily for lightly to moderately

exudative wounds, and twice daily for heavily exudative

wounds or highly contaminated wounds [3]. In addition, the

efficacy and safety of DS has been debated since Alexander

Fleming first raised concerns in 1919 [11]. Since that time,

there have been numerous studies on DS and other chlorite

containing antiseptics. In vitro studies have revealed dimin

ished fibroblast viability, decreased fibroblast migration,

decreased keratinocyte viability, decreased keratinocyte

growth rates, and decreased endothelial cell viability [12e19].

In addition, a negative impact on neutrophil viability and

neutrophil migration have been described [16,20].

Recently, our research group demonstrated that DS

exhibited dose dependent toxicity and efficacy (against four

clinical mold isolates including aspergillus and Mucor) with

0.00025% appearing to optimize these parameters [21]. There

is a paucity of data regarding the impact of DS onmacrophage

viability and function with two studies revealing decreased

macrophage adherence with 5.25% DS [22,23]. Neutrophils are

typically thought of as the most important leukocyte in the

wound as they are the predominant cell type in the first 24 h

following injury and are the primary cells responsible for

bacterial clearance [24]. In comparison with neutrophils,

macrophages are longer lived, produce high levels of

pro inflammatory mediators that amplify immune cell

recruitment and/or activation cascades, and exhibit potent

phagocytic and antimicrobial effects [24]. Macrophages

display two opposite phenotypes known as classically acti

vated (M1) and alternatively activated (M2) macrophages [25].

The M1 macrophage is pro inflammatory and is often asso

ciated with tissue injury and inflammation, whereas the M2

macrophage is associated with tissue repair and fibrosis [25].

In the inflammatory phase of wound healing, invading

macrophages serve as antigen presenting cells to T cells, and

kill bacteria through multiple mechanisms providing innate

immunity against filamentous fungi via phagocytosis of con

idia [24,26e28]. Classic wound models view wound healing as

being primarily directed by cytokines and growth factors, but

it is becoming apparent that macrophages are key orchestra

tors of the wound healing process [26].

In summary, macrophages are dynamic cells that are

important in the wound microenvironment as they mediate

pathogen defense and the healing cascade [25e28]. Thus, in

this study we sought to characterize the impact of DS on

macrophage viability and function in vitro.

2. Materials and methods

2.1. Cell lines and reagents

Murine macrophages, (J77A4.1; ATCC TIB 67), isolated from

adult females and purchased from ATCC were used in this

study (Manassas, VA) were grown in Dulbecco modified eagle

medium (DMEM) supplemented with 10% fetal bovine serum,

10 U/mL penicillin, 10 mg/mL streptomycin, and maintained at

37�C in 5% CO2. DS (buffered sodium hypochlorite) was pur

chased fromCentury Pharmaceuticals Inc (Indianapolis, IN) at

full strength (0.5%), half strength (0.25%), quarter strength

(0.125%), and 1/40 strength (0.0125%).

2.2. Clinical strains and growth conditions

Bacterial strains used included Staphylococcus aureus strain

UAMS 1 (ATCC strain 49,230), a well characterizedmethicillin

susceptible osteomyelitis isolate, and Pseudomonas aeruginosa

strain PAO1 [29,30]. Aspergillus flavus, strain SAMMC 1, is a

clinical isolate selected from a strain collection from the San

Antonio Military Medical Center, Ft. Sam Houston, TX. This

isolate was collected as a part of patient care and not directly

related to clinical research. S. aureus and P. aeruginosa were

grown in tryptic soy broth or LuriaeBertani broth, respec

tively, overnight at 37�C with agitation. A flavus was sub

cultured on potato flake agar slants at 35�C. Conidia were

harvested by washing 7 d old slant culture with phosphate

buffered saline (PBS) containing 0.1% Tween20, filtered

through a 40 mm pore size cell strainer to separate conidia

from mycelium, and stored in DMEM at 4�C.

2.3. Cellular viability assays

Effect of DS on cellular viability was performed as previously

described [21]. Briefly, macrophages were seeded into 96 well

black plates with clear bottoms (Fisher, Pittsburgh, PA), grown

to confluence, and exposed to 0.00025, 0.0025, 0.025, 0.125,

0.25, and 0.5% DS diluted in saline (0.9% NaCl, pH 7.4) for 0.5, 1,

5, 10, and 15 min at the designated concentrations. Time

points were selected based on previous studies demonstrating

significant cellular toxicity on various cell lines after exposure

to DS for <30 min. After treatment cells were washed, resus

pended (PBS; pH 7.4), and cell viabilitywasmeasured using the

CellTiter Fluor assay (Promega, Madison, WI). Cell viability
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was reported as a percentage to untreated controls. For anal

ysis of macrophage function following treatment and to

accurately control exposure times of DS, cells were exposed to

an equal volume of 0.2 M sodium thiosulfate (Sigmae

Aldrich, St. Louis, MO), a neutralizing agent, immediately

following treatment.

2.4. Phagocytosis assays

Cells (5 � 105 cells) were seeded into 24 well tissue culture

plates. For the bacterial phagocytosis assays, cells were

infected with 10 multiplicity of infection (MOI) of S aureus

UAMS 1 or with 50 MOI of P aeruginosa PAO1 in 500 mL DMEM

per well for 30 min. After exposure, cells were washed with

PBS, incubated for 2 h in medium containing 100 mg/mL

gentamicin, to kill extracellular bacteria, washed, and then

lysed with 0.1% Triton X 100. The number of internalized

bacteria was determined by plating serial dilutions of lysates

onto blood agar plates. The bacterial phagocytosis index was

calculated by using the following formula: (bacteria recovered

[colony forming units/mL]/bacteria inoculated [colony

forming units/mL]). [31]. The fungal phagocytic index was

determined as previously described [32]. Before use within the

phagocytosis assays, fungal conidia were labeled with FUN

1 cell stain (10 mM; Invitrogen, Grand Island, NY) as recom

mended by the manufacturer. Macrophages were infected as

mentioned previously with 2 MOI of A. flavus in 500 mL DMEM

per well for 2 h. After exposure, cells were fixed with 4%

paraformaldehyde (Electron Microscopy Sciences, Hatfield,

PA) and counter stained with calcofluor white (Invitrogen).

External and internalized conidia were distinguished by

fluorescencemicroscopy by distinguishing between calcofluor

white, which binds to fungal cell wall components but does

not penetrate macrophage cell membrane and FUN 1 stain.

Phagocytosed conidia appear green (FUN 1þ), whereas conidia

external to macrophages (i.e., not phagocytosed) appear blue

under fluorescence microscopy. Two hundred cells per slide

were counted by fluorescencemicroscopy. Phagocytic index is

the average number of conidia phagocytosed by macrophages

that were observed by fluorescence microscopy to contain at

least one internalized conidium.

2.5. Measurement of reactive oxygen species (ROS)
release

Release of ROS was evaluated by measuring the extracellular

production of H2O2 following lipopolysaccharide (LPS) stimu

lation in macrophages using the Amplex Red fluorometric

assay (Molecular Probes, Carlsbad, CA) as recommended by

the manufacturer. Briefly, cells were exposed to DS as

mentioned previously, followed by neutralization in sodium

thiosulfate, resuspended in PBS, and plated into black clear

bottom 96 well plate at a density of 105 cells per well. Treated

cells were then stimulated with 100 ng/mL of LPS for 1 h,

followed by the addition of Amplex Red (20 mM) and horse

radish peroxidase (0.1 U/mL), and incubated for 37�C for

30 min. After incubation, supernatants were transferred to a

96 well plate and the fluorescence was measured (Ex 540 nm,

Em 590 nm). Concentrations of H2O2 in supernatants were

calculated using a standard curve generated with H2O2. Cell

cultures were lysed in 0.1% Triton X 100 and protein concen

trations were determined using a bicinchoninic acid assay.

Total H2O2 concentrations were normalized to cellular protein

concentrations. For controls, cells in DMEMwere washedwith

PBS and exposed to a neutralizing agent as described

previously.

2.6. Macrophage adhesion assay

Macrophage adhesion assays were performed as previously

described with minor modifications [33]. Briefly, cell suspen

sions of 2.5e5.0 � 106 cells/mL were pulsed with test con

centrations of DS and neutralized with an equal volume of

0.2 M sodium thiosulfate. As a control, cells were treated with

1X PBS followed by neutralization as mentioned previously.

After treatment, cells were harvested, washed with PBS, and

resuspended in Roswell Park Memorial Institute medium.

Viable cells after treatmentwere determined using a Countess

Automated Cell Counter per manufacturer’s instructions (Life

Technologies, Grand Island, NY). Cells were then resuspended

to equivalent cell densities and 200 mL were placed into indi

vidual wells of a 48 well plate. Cells were allowed to adhere to

plastic surfaces for 15 and 30 min at 37�C in 5% CO2. These

timepoints were chosen as they have been cited as optimal

time for adhesion [33]. After incubation, nonadherent cells

were collected by aspirating media and adherent cells were

collected after treatment with 0.25% Trypsin EDTA (Invi

trogen, Carlsbad, CA) to calculate the total number of macro

phages. Adherence index (AI) was calculated by the following

equation.

AI 100

�
Nonadherent macrophages=mL

Total macrophages=mL

�
� 100

2.7. RNA extraction and quantitative real-time PCR

Cells were grown to confluence in T25 culture flasks and

treated as mentioned previously at the indicated concentra

tions. Cells were washed, resuspended in DMEM, and incu

bated for 10, 30, and 60 min postexposure at 37�C in 5% CO2.

RNA was extracted and purified using the RNAeasy Mini Kit

(Qiagen, Valencia, CA) according to the manufacturer’s in

structions. First strand synthesis was achieved with Super

Script III first strand synthesis supermix with oligo dT

primers (Invitrogen) for each RNA sample following recom

mended protocols using a PTC 100 Thermal Cycler (GMI Inc,

Ramsey, MN). To examine the impact of DS on macrophage

polarization, genes associated with classical macrophage

activation (interleukin [IL] 1b, Nos2, and interferon g) and

alternativemacrophage activation (Arg 1, IL 10, and IL 4) were

evaluated. For genes of interest, quantitative real time poly

merase chain reaction was performed using a Bio Rad C1000

system and analyzed using iQ5 software (BioRad, Hercules,

CA). Forward and reverse primers sets used in this study were

purchased from SA Biosciences (Valencia, CA) and used ac

cording to the manufacture recommended protocols. Ampli

fication reactions were performed using qPCR iQSYBR Green

Super Mix (BioRad) with the following conditions: 10 min at

95�C, followed by 40 cycles at 95�C for 10 s, 60�C for 30 s, and

72�C for 30 s. Three independent biological experiments with
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quantitative real time polymerase chain reaction for markers

of M1 macrophage activation, including (IL 1b), inducible ni

tric oxide synthase 2, and interferon g, demonstrated an in

crease in gene expression, with 0.00025% DS having the most

pronounced effect. In contrast, genes associated with M2

macrophage activation, including arginase (Arg1), (IL 10), and

(IL 4), were not observed to increase to levels similar of the

genes associated with classical macrophage activation after

treatment with DS.

4. Discussion

We have demonstrated that DS at clinically used concentra

tions (0.025%e0.25%) was detrimental to macrophage survival

and function in vitro. Additionally, treatment with DS resulted

in classical macrophage activation. Understanding the impact

of DS on macrophages is important as they are key mediators

in pathogen defense and are central players in the wound

healing cascade [25e28].

It follows that depletion of macrophages in the wound

microenvironment by DS may result in impaired pathogen

clearance and delayed healing. In addition, we were also able

to demonstrate that the remaining macrophages did not have

adequate functional activity. In vivo, mice depleted of macro

phages before injury typically show a defect in epithelial

growth, granulation tissue formation, angiogenesis, wound

cytokine production, and myofibroblast associated wound

contraction [25]. Macrophage depletion during the post

inflammatory phase of sterile wounds has also been found to

delay wound healing and support hemorrhage because of

persistent apoptosis of endothelial cells and detachment of

the neuroepithelium [34].

Our study is consistent with other in vitro studies in the

literature as DS concentrations �0.0025% cause significant

cytotoxicity to many cell lines [12e20]. In addition, we were

able to demonstrate similar decrements in macrophage

function with DS exposure, as have been demonstrated in

neutrophils [16e20]. However, it appears that at least in in vitro

studies, leukocytes are more sensitive functionally to DS as

neutrophil chemotaxis was inhibited with DS concentrations

Fig. 1 e DS reduces macrophage phagocytosis. (A) S. aureus. (B) P. aeruginosa. (C) A. flavus. Bars represent the

mean ± standard deviation of three independent experiments. *P < 0.05.

Fig. 2 e Treatment of LPS-stimulated macrophages with DS

impairs ROS (H2O2) production. Box plots represent the

mean of three independent experiments. Error bars

represent the standard deviation.
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against gram positive organisms, but may allow survival of

gram negative organisms (13). However, molds appear to be

susceptible to concentrations as low as 0.00025% (21). Thus,

the optimal concentration, exposure time, and duration of

therapy for clinical use needs to be determined via detailed

in vivo experiments. Such studies should compare irrigation,

soaked gauze application, the CarreleDakin method, and

negative pressure wound therapy with DS instillation. These

studies should also involve close histopathologic evaluation,

and extraction of cell lines from the wound bed (fibroblasts,

neutrophils, macrophages, and so forth) to evaluate for cyto

toxic and functional impacts of therapy. Another approach to

explore would be use of higher concentrations of DS initially

when wounds have a high amount of purulence and bacterial

burden, followed by downward titration of the DS concen

tration as the wound becomes more sterile to limit potential

tissue toxicity [17].

5. Conclusions

In conclusion, we have demonstrated that DS at clinically

used concentrations (0.025%e0.25%) was detrimental to

macrophage survival and function in vitro. Additionally,

treatment with DS resulted in classical macrophage activa

tion. Understanding the impact of DS on macrophages is

important as they are key mediators in pathogen defense and

are central players in the wound healing cascade, and deple

tion by DS may result in impaired pathogen clearance and

delayed healing. However, the true impact of DS on macro

phage function and clinical wound outcomes will need to be

determined in future in vivo and clinical studies.
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